

Which number is NOT a common multiple of 4 and 8 ? Explain in 2-3 sentences why (you can provide examples and draw a model).
A. 16
B. 24
C. 28
D. 32
E. 48

GCF $\not \mathscr{C}$ LCM

CCMP3: Mathematics

Backcround

Vocabulary - Recab from 5th grade

- Prime Number - have exactly two factors, 1 and itself.
- Composite Number - divided evenly by numbers other than one and itself.
- Even Number - have a factor of two or are divisible by two
- Odd Numbers - do not have a factor of two or are not divisible by two.
- Square Number - also known as perfect square. It is the product of some integer with itself.

Vocabulary

- Factor - a number or quantity that when multiplied with another produces a given number or expression.
- Multiple - a number that can be divided by another number without a remainder.
- Factor Pair - a set of two numbers, which when multiplied result in a definite number.

Vocabulary

- Greatest Common Factor (GCF) - The greatest factor that divides two numbers.
- Least Common Multiple (LCM) - The smallest number that they both divide evenly into.

Let's take a look at Factors and Multiples

We know that $3 \times 4=12 . \quad$ But what does this mean exactly?

This means that 3 is a factor of 12 and that 4 is a factor of 12 . Therefore, 3 and 4 are a factor pair because their product is equal to 12 .

Let's take a look at Factors and Multiples

3 is a factor of 12 .
3 is a divisor of 12 .

$=$
12

4 is a factor of 12
4 is a divisor of 12 .

12 is the product of 3 and 4 .
12 is a multiple of 3 .
12 is a multiple of 4 .
12 is divisible by 3 .
12 is divisible by 4 .

Tricks to finding GCF

\star Use a Venn Diagram to find the common factors
\star Identify the largest factor as the GCF

Creating a Venn Diagram to find GCF

What is the GCF of 18 and 24 ?

Example 2

What is the greatest common factor (GCF) of 12 and 54 ?

Trick to finding LCM

丸 Multiply both numbers by $1,2,3,4,5, \ldots$...and then find the multiple that appears in both lists.
\star That number, is your LCM.

Example 1

What is the LCM of 3 and 5 ?

Example 2

Matt has 7 red balls. Clara has 14 green balls. Erick has 10 blue balls. Find the LCM of these numbers.
a.) 7
b.) 33
c.) 145
d.) 70

Example 3

Pencils come in packages of 10 . Erasers come in packages of 12. Joe wants to purchase the smallest number of pencils and erasers, so that he will have exactly 1 erasers per pencil. How many packages of pencils and erasers should Joe buy?

Homework

GGF and LCM Practice

Distributive

 Property
Vocabulary

Distributive Property - Multiplying a number by a group of numbers added together.

Equivalent Expression - expressions that are the same, even though they look different.

Let's Review

\star Any number can be written as a sum of two (or more) numbers.
Example: 15

$$
1+14
$$

Let's Review

\star A factor of a multiplication expression can be written as the sum of two numbers.

Example:

\star Parentheses can be used to show multiplication
Example: $\quad 5 \mathrm{x}(10+3)=5(10+3)$

Distributive Property

If we want to write an equivalent expression for multiplying 5×13, we can use the Distributive Property.
$5(10+3)=(5 \times 10)+(5 \times 3)$

Using Distributive Property

How can the Distributive Property help us to write an equivalent expression using the GCF for $24+9$?

1. Find the GCF for 24 and 9
2. Rewrite the expression $24+9$ using the factor pairs with the GCF
3. Take out the GCF and multiply by it by the two addends.

Example: $24+9$

Example 1

Use the distributive property to write an equivalent expression using the GCF for $15+45$.

Example 2

Use the distributive property to write an equivalent expression using the GCF for $6+8$.

Homework

Distributive Property Practice

